We know now how to convert polar coordinate points (r,theta) into rectangular coordinate points (x,y). We’ve used the conversion formulas x=rcos(theta), y=rsin(theta), r^2=x^2+y^2, and tan(theta)=y/x. In the same way that we used these conversion formulas to convert coordinate points, we can also use them to convert equations from polar coordinates into rectangular coordinates.
Read MoreWe can say that there are an infinite number of ways to express the same point in space in polar coordinates. We can 1) keep the value of r the same but add or subtract any multiple of 2π from theta, and/or 2) change the value of r to -r while we add or subtract any odd multiple of π from theta.
Read MoreCramer’s Rule is a simple rule that lets us use determinants to solve a system of equations. It tells us that we can solve for any variable in the system by calculating D_v/D, where D_v is the determinant of the coefficient matrix, with the answer column values substituted into the column representing the variable for which we’re trying to solve, and where D is the determinant of the coefficient matrix.
Read MoreYou know already how to solve systems of linear equations using substitution, elimination, and graphing. This time, we want to talk about how to solve systems using inverse matrices.
Read More