We can estimate the average value of a region of level curves by using the formula (1/A(R)) int int_R f(x,y) Delta(A), where A(R) is the area of the rectangle defined by R=[x1,x2]x[y1,y2], and where the double integral gives the volume under the surface f(x,y) over the region R.
Read MoreJust as we did with single variable functions, we can use the second derivative test with multivariable functions to classify any critical points that the function might have. To use the second derivative test, we’ll need to take partial derivatives of the function with respect to each variable. Once we have the partial derivatives, we’ll set them equal to 0 and use these as a system of simultaneous equations to solve for the coordinates of all possible critical points.
Read More