If we’re given a double integral in rectangular coordinates and asked to evaluate it as a double polar integral, we’ll need to convert the function and the limits of integration from rectangular coordinates (x,y) to polar coordinates (r,theta), and then evaluate the integral. We can do this using the formulas to convert between rectangular and polar coordinates.
Read MoreAny point in the coordinate plane can be expressed in both rectangular coordinates and polar coordinates. Instead of moving out from the origin using horizontal and vertical lines, like we would with rectangular coordinates, in polar coordinates we instead pick the angle, which is the direction, and then move out from the origin a certain distance.
Read More