We can use the p-series test for convergence to say whether or not a_n will converge. The p-series test says that a_n will converge when p>1 but that a_n will diverge when p≤1. The key is to make sure that the given series matches the format above for a p-series, and then to look at the value of p to determine convergence.
Read MoreThe ratio test for convergence lets us determine the convergence or divergence of a series a_n using a limit, L. Once we find a value for L, the ratio test tells us that the series converges absolutely if L<1, and diverges if L>1 or if L is infinite. The test is inconclusive if L=1. The ratio test is used most often when our series includes a factorial or something raised to the nth power.
Read MoreThe alternating series test for convergence lets us say whether an alternating series is converging or diverging. When we use the alternating series test, we need to make sure that we separate the series a_n from the (-1)^n part that makes it alternating.
Read MoreTelescoping series are series in which all but the first and last terms cancel out. If you think about the way that a long telescope collapses on itself, you can better understand how the middle of a telescoping series cancels itself.
Read More