Trigonometric limit problems revolve around three formulas, so it’s critical that we know these trig limit formulas. When we solve trigonometric limit problems, our goal is always to reduce the function to a combination of nothing but these three formulas and simple constants.
Read MoreConjugate method can only be used when either the numerator or denominator contains exactly two terms. In order to use it, we have to multiply by the conjugate of whichever part of the fraction contains the radical. The conjugate of two terms is those same two terms with the opposite sign in between them. Notice that we multiply both the numerator and denominator by the conjugate, because that’s like multiplying by 1, which doesn’t change the value of the original function.
Read MoreWe’ve been looking at physical applications of derivatives, but there are also economics applications. In this lesson, we’ll look at marginal cost, revenue, and profit. But before we jump into these marginal values, let’s look at cost, revenue, and profit in general.
Read MorePreviously we learned how to create a power series representation for a function by modifying a similar, known series to match the function. When we have the product of two known power series, we can find their product by multiplying the expanded form of each series in the product.
Read MoreAt any given point along a curve, we can find the acceleration vector ‘a’ that represents acceleration at that point. If we find the unit tangent vector T and the unit normal vector N at the same point, then the tangential component of acceleration a_T and the normal component of acceleration a_N are shown in the diagram below.
Read More