How to find maximum curvature for a vector function at a particular point

 
 
Maximum curvature blog post.jpeg
 
 
 

Let’s look at all the formulas we’ll use to find maximum curvature

Before we can find maximum curvature of a vector function ???r(t)=r(t)_1\bold i+r(t)_2\bold j+r(t)_3\bold k???, we first have to find curvature ???\kappa(t)???. To find the curvature ???\kappa(t)??? of a vector function ???r(t)=r(t)_1\bold i+r(t)_2\bold j+r(t)_3\bold k???, we’ll use the equation

???\kappa(t)=\frac{|T'(t)|}{|r'(t)|}???

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

where ???|T'(t)|??? is the magnitude of the derivative of the unit tangent vector ???T(t)???, which we can find using

???|T'(t)|=\sqrt{[T'(t)_1]^2+[T'(t)_2]^2+[T'(t)_3]^2}???

where ???T(t)??? is the unit tangent vector, which we can find using

???T(t)=\frac{r'(t)}{|r'(t)|}???

where ???r'(t)??? is the derivative of the vector function and where ???|r'(t)|??? is the magnitude of the derivative of the vector function, which we can find using

???|r'(t)|=\sqrt{[r'(t)_1]^2+[r'(t)_2]^2+[r'(t)_3]^2}???

In other words, in order to find ???\kappa(t)???, we’ll

  1. Find ???r'(t)???, and use it to

  2. Find ???|r'(t)|???, and then use ???r'(t)??? and ???|r'(t)|??? to

  3. Find ???T(t)???, and then use it to

  4. Find ???T'(t)???, and then use it to

  5. Find ???|T'(t)|???, and then use ???|r'(t)|??? and ???|T'(t)|??? to

  6. Find ???\kappa(t)???

Once we have curvature, we’ll take its derivative ???\kappa'(t)???. We’ll set the derivative equal to ???0??? and solve for ???t???. If there’s only one value for ???t???, that value is the one associated with maximum curvature. If there’s more than one value for ???t???, we’ll use the second derivative test to determine which one represents maximum curvature.

 
 

How to find maximum curvature of a vector function


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Finding curvature when we find only one value for t

Example

Find maximum curvature of the vector function with the given curvature.

???\kappa(t)=8t^2-4t???

First, we’ll find the derivative of ???\kappa(t)???.

???\kappa(t)=8t^2-4t???

???\kappa'(t)=16t-4???

Maximum curvature for Calculus 3.jpg

If there’s more than one value for t, we’ll use the second derivative test to determine which one represents maximum curvature.

Next we’ll set ???\kappa'(t)=0??? and solve for ???t???.

???0=16t-4???

???-16t=-4???

???t=\frac{-4}{-16}???

???t=\frac14???

Since we found just one value for ???t???, we know that maximum curvature occurs when ???t=1/4???.

 
Krista King.png
 

Get access to the complete Calculus 3 course