Finding curvature of the vector function

 
 
Curvature blog post.jpeg
 
 
 

Steps for finding curvature

To find the curvature ???\kappa(t)??? of a vector function ???r(t)=r(t)_1\bold i+r(t)_2\bold j+r(t)_3\bold k???, we’ll use the equation

???\kappa(t)=\frac{\left|T'(t)\right|}{\left|r'(t)\right|}???

where ???\left|T'(t)\right|??? is the magnitude of the derivative of the unit tangent vector ???T(t)???, which we can find using

???\left|T'(t)\right|=\sqrt{\left[T'(t)_1\right]^2+\left[T'(t)_2\right]^2+\left[T'(t)_3\right]^2}???

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

where ???T(t)??? is the unit tangent vector, which we can find using

???T(t)=\frac{r'(t)}{\left|r'(t)\right|}???

where ???r'(t)??? is the derivative of the vector function and where ???\left|r'(t)\right|??? is the magnitude of the derivative of the vector function, which we can find using

???\left|r'(t)\right|=\sqrt{\left[r'(t)_1\right]^2+\left[r'(t)_2\right]^2+\left[r'(t)_3\right]^2}???

In other words, in order to find ???\kappa(t)???, we’ll

  1. Find ???r'(t)???, and use it to

  2. Find ???\left|r'(t)\right|???, and then use ???r'(t)??? and ???\left|r'(t)\right|??? to

  3. Find ???T(t)???, and then use it to

  4. Find ???T'(t)???, and then use it to

  5. Find ???\left|T'(t)\right|???, and then use ???\left|r'(t)\right|??? and ???\left|T'(t)\right|??? to

  6. Find ???\kappa(t)???

 
 

How to find curvature of a vector function


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

How to find curvature step-by-step for a vector function

Example

Find the curvature of the vector function.

???r(t)=4t\bold i+t^2\bold j+2t\bold k???

We’ll start by calculating the derivative of the vector function.

???r'(t)=4\bold i+2t\bold j+2\bold k???

Then we’ll find ???\left|r'(t)\right|???.

???\left|r'(t)\right|=\sqrt{\left[r'(t)_1\right]^2+\left[r'(t)_2\right]^2+\left[r'(t)_3\right]^2}???

???\left|r'(t)\right|=\sqrt{(4)^2+(2t)^2+(2)^2}???

???\left|r'(t)\right|=\sqrt{16+4t^2+4}???

???\left|r'(t)\right|=\sqrt{4t^2+20}???

???\left|r'(t)\right|=\sqrt{4\left(t^2+5\right)}???

???\left|r'(t)\right|=2\sqrt{t^2+5}???

Now we’ll use the derivative and its magnitude to find an equation for the unit tangent vector ???T(t)???.

???T(t)=\frac{r'(t)}{\left|r'(t)\right|}???

???T(t)=\frac{4\bold i+2t\bold j+2\bold k}{2\sqrt{t^2+5}}???

???T(t)=\frac{4}{2\sqrt{t^2+5}}\bold i+\frac{2t}{2\sqrt{t^2+5}}\bold j+\frac{2}{2\sqrt{t^2+5}}\bold k???

???T(t)=\frac{2}{\sqrt{t^2+5}}\bold i+\frac{t}{\sqrt{t^2+5}}\bold j+\frac{1}{\sqrt{t^2+5}}\bold k???

Curvature for Vectors.jpg

To find curvature, we need the derivative of the vector function, the magnitude of the derivative, the unit tangent vector, its derivative, and the magnitude of its derivative.

Now we can find the derivative of the unit tangent vector ???T'(t)???. We’ll need to use quotient rule to find the derivatives of the coefficients on ???\bold i???, ???\bold j???, and ???\bold k???.

???T'(t)=\frac{(0)\sqrt{t^2+5}-(2)\left[\frac12\left(t^2+5\right)^{-\frac12}(2t)\right]}{\left(\sqrt{t^2+5}\right)^2}\bold i+\frac{(1)\sqrt{t^2+5}-(t)\left[\frac12\left(t^2+5\right)^{-\frac12}(2t)\right]}{\left(\sqrt{t^2+5}\right)^2}\bold j???

???+\frac{(0)\sqrt{t^2+5}-(1)\left[\frac12\left(t^2+5\right)^{-\frac12}(2t)\right]}{\left(\sqrt{t^2+5}\right)^2}\bold k???

???T'(t)=\frac{-2t\left(t^2+5\right)^{-\frac12}}{t^2+5}\bold i+\frac{\sqrt{t^2+5}-t^2\left(t^2+5\right)^{-\frac12}}{t^2+5}\bold j+\frac{-t\left(t^2+5\right)^{-\frac12}}{t^2+5}\bold k???

???T'(t)=-\frac{2t}{\left(t^2+5\right)^\frac32}\bold i+\frac{\sqrt{t^2+5}-\frac{t^2}{\sqrt{t^2+5}}}{t^2+5}\bold j-\frac{t}{\left(t^2+5\right)^\frac32}\bold k???

???T'(t)=-\frac{2t}{\left(t^2+5\right)^\frac32}\bold i+\frac{\frac{t^2+5}{\sqrt{t^2+5}}-\frac{t^2}{\sqrt{t^2+5}}}{t^2+5}\bold j-\frac{t}{\left(t^2+5\right)^\frac32}\bold k???

???T'(t)=-\frac{2t}{\left(t^2+5\right)^\frac32}\bold i+\frac{\frac{t^2+5-t^2}{\sqrt{t^2+5}}}{t^2+5}\bold j-\frac{t}{\left(t^2+5\right)^\frac32}\bold k???

???T'(t)=-\frac{2t}{\left(t^2+5\right)^\frac32}\bold i+\frac{\frac{5}{\sqrt{t^2+5}}}{t^2+5}\bold j-\frac{t}{\left(t^2+5\right)^\frac32}\bold k???

???T'(t)=-\frac{2t}{\left(t^2+5\right)^\frac32}\bold i+\frac{5}{\left(t^2+5\right)^\frac32}\bold j-\frac{t}{\left(t^2+5\right)^\frac32}\bold k???

Then we’ll find the magnitude of the derivative of the unit tangent vector ???\left|T'(t)\right|???.

???\left|T'(t)\right|=\sqrt{\left[T'(t)_1\right]^2+\left[T'(t)_2\right]^2+\left[T'(t)_3\right]^2}???

???\left|T'(t)\right|=\sqrt{\left[-\frac{2t}{\left(t^2+5\right)^\frac32}\right]^2+\left[\frac{5}{\left(t^2+5\right)^\frac32}\right]^2+\left[-\frac{t}{\left(t^2+5\right)^\frac32}\right]^2}???

???\left|T'(t)\right|=\sqrt{\frac{4t^2}{\left(t^2+5\right)^3}+\frac{25}{\left(t^2+5\right)^3}+\frac{t^2}{\left(t^2+5\right)^3}}???

???\left|T'(t)\right|=\sqrt{\frac{5t^2+25}{\left(t^2+5\right)^3}}???

???\left|T'(t)\right|=\sqrt{\frac{5\left(t^2+5\right)}{\left(t^2+5\right)^3}}???

???\left|T'(t)\right|=\sqrt{\frac{5}{\left(t^2+5\right)^2}}???

???\left|T'(t)\right|=\frac{\sqrt{5}}{t^2+5}???

Finally we can solve for the curvature ???\kappa(t)??? of the vector function

???\kappa(t)=\frac{\left|T'(t)\right|}{\left|r'(t)\right|}???

???\kappa(t)=\frac{\frac{\sqrt{5}}{t^2+5}}{2\sqrt{t^2+5}}???

???\kappa(t)=\frac{\sqrt{5}}{2\left(t^2+5\right)^\frac32}???

This is the curvature of the vector function.

 
Krista King.png
 

Get access to the complete Calculus 3 course