Finding the cross product of two vectors

 
 
Cross product of two vectors blog post.jpeg
 
 
 

Building the formula for the cross product of two vectors

To take the cross product of two vectors

???a\langle a_1,a_2,a_3\rangle???

???b\langle b_1,b_2,b_3\rangle???

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

we’ll create a matrix in the form

???\begin{vmatrix}\bold i&\bold j&\bold k\\a_1&a_2&a_3\\b_1&b_2&b_3\end{vmatrix}???

As always, we’ll use the sign matrix

???\begin{vmatrix}+&-&+\\-&+&-\\+&-&+\end{vmatrix}???

to determine the signs for our top row. We’ll expand the matrix to

???\begin{vmatrix}\bold i&\bold j&\bold k\\a_1&a_2&a_3\\b_1&b_2&b_3\end{vmatrix}=\bold i\begin{vmatrix}a_2&a_3\\b_2&b_3\end{vmatrix}-\bold j\begin{vmatrix}a_1&a_3\\b_1&b_3\end{vmatrix}+\bold k\begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix}???

???=\bold i(a_2b_3-a_3b_2)-\bold j(a_1b_3-a_3b_1)+\bold k(a_1b_2-a_2b_1)???

and then take the coefficients on ???i???, ???j??? and ???k??? to form the cross product vector ???c\langle{c_1},c_2,c_3\rangle???, where

???c_1=a_2b_3-a_3b_2???

???c_2=a_1b_3-a_3b_1???

???c_3=a_1b_2-a_2b_1???

If you can remember the formula for

???\bold i(a_2b_3-a_3b_2)-\bold j(a_1b_3-a_3b_1)+\bold k(a_1b_2-a_2b_1)???

then you can skip the matrices and go straight to this step. If not, just use the matrix approach.

 
 

How to find the cross product of two vectors


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Using the 3x3 matrix to find the cross product of two vectors

Example

Find the cross product of the vectors.

???a\langle2,-4,1\rangle???

???b\langle-2,5,7\rangle???

For the sake of this example, we’ll assume we can’t remember the formula for

???\bold i(a_2b_3-a_3b_2)-\bold j(a_1b_3-a_3b_1)+\bold k(a_1b_2-a_2b_1)???

and use the matrix.

Cross product of two vectors for Calculus 3.jpg

If you can remember the formula,

then you can skip the matrices and go straight to this step. If not, just use the matrix approach.

Plugging the values from the given vectors into our ???3\times3??? matrix, we get

???\overrightarrow{a}\times\overrightarrow{b}=\begin{vmatrix}\bold i & \bold j & \bold k \\ 2 & -4& 1 \\ -2& 5 & 7\end{vmatrix}???

???\overrightarrow{a}\times\overrightarrow{b}=\bold i\begin{vmatrix}-4 & 1 \\ 5 & 7\end{vmatrix}-\bold j\begin{vmatrix}2 & 1 \\ -2 & 7\end{vmatrix}+\bold k\begin{vmatrix}2 & -4 \\ -2 & 5\end{vmatrix}???

???\overrightarrow{a}\times\overrightarrow{b}=\bold i\left[(-4)(7)-(1)(5)\right]-\bold j\left[(2)(7)-(1)(-2)\right]+\bold k\left[(2)(5)-(-4)(-2)\right]???

???\overrightarrow{a}\times\overrightarrow{b}=\bold i(-28-5)-\bold j(14+2)+\bold k(10-8)???

???\overrightarrow{a}\times\overrightarrow{b}=-33\bold i-16\bold j+2\bold k???

???\overrightarrow{a}\times\overrightarrow{b}=\langle-33,-16,2\rangle???

This is the cross product of the vectors ???a??? and ???b???.

 
Krista King.png
 

Get access to the complete Calculus 3 course