Finding the area bounded by one loop of a polar curve

 
 
Area bounded by one loop of a polar curve blog post.jpeg
 
 
 

The formula we use to find the area inside the polar curve

When we need to find the area bounded by a single loop of the polar curve, we’ll use the same formula we used to find area inside the polar curve in general.

???A=\int^{\beta}_{\alpha}\frac12r^2\ d\theta???

where ???[\alpha,\beta]??? is the interval

where ???r??? is the equation of the polar curve

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

The best way to find the interval that defines one loop of the curve is to graph the curve.

 
 

How to find the area bounded by one loop of a polar curve


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Finding the area bounded by one loop of the graph of a polar curve

Example

Find the area bounded by one loop of the the polar curve.

???r=3\sin{(2\theta)}???

We’ll start by finding points that we can use to graph the curve. In order to do so, we’ll take the value inside the trigonometric function, set it equal to ???\pi/2???, and solve for ???\theta???.

???2\theta=\frac{\pi}{2}???

???\theta=\frac{\pi}{4}???

We need to find coordinate points for multiples of ???\pi/4??? in the interval ???0\leq\theta\leq2\pi???.

table showing the values of r that correspond to different values of theta

Plotting these points on polar axes, we get

graph of the points on the polar axes

From the graph, we can see that the curve starts at ???(0,0)???, goes out to ???3??? at an angle ???\pi/4???, then curves back to the origin at the angle ???\pi/2???. Plugging this into the area formula, we get

???A=\int^{\frac{\pi}{2}}_{0}\frac12\left[3\sin{(2\theta)}\right]^2\ d\theta???

???A=\int^{\frac{\pi}{2}}_{0}\frac12\left[9\sin^2{(2\theta)}\right]\ d\theta???

???A=\frac92\int^{\frac{\pi}{2}}_{0}\sin^2{(2\theta)}\ d\theta???

Area bounded by one loop of a polar curve for Calculus 2.jpg

When we need to find the area bounded by a single loop of the polar curve, we’ll use the same formula we used to find area inside the polar curve in general.

We’ll use u-substitution, letting

???u=2\theta???

???du=2\ d\theta???

???d\theta=\frac{du}{2}???

We’ll substitute into the integral.

???A=\frac92\int^{\theta=\frac{\pi}{2}}_{\theta=0}\sin^2{u}\ \frac{du}{2}???

???A=\frac94\int^{\theta=\frac{\pi}{2}}_{\theta=0}\sin^2{u}\ du???

Since ???\sin^2{u}=\frac12\left[1-\cos{(2u)}\right]???, we get

???A=\frac94\int^{\theta=\frac{\pi}{2}}_{\theta=0}\frac12\left[1-\cos{(2u)}\right]\ du???

???A=\frac94\int^{\theta=\frac{\pi}{2}}_{\theta=0}\frac12-\frac{1}{2}\cos{(2u)}\ du???

???A=\frac94\left[\frac12u-\frac14\sin{(2u)}\right]\bigg|^{\theta=\frac{\pi}{2}}_{\theta=0}???

Back-substituting for ???u???, we get

???A=\frac94\left[\frac12(2\theta)-\frac14\sin{(2(2\theta))}\right]\bigg|^{\frac{\pi}{2}}_{0}???

???A=\frac94\left[\theta-\frac14\sin{(4\theta)}\right]\bigg|^{\frac{\pi}{2}}_{0}???

???A=\frac94\left[\frac{\pi}{2}-\frac14\sin{\left(4\cdot\frac{\pi}{2}\right)}-\left(0-\frac14\sin{(4\cdot0)}\right)\right]???

???A=\frac94\left(\frac{\pi}{2}-\frac{1}{4}\sin{2\pi}+\frac14\sin{0}\right)???

???A=\frac94\left(\frac{\pi}{2}-\frac14(0)+\frac14(0)\right)???

???A=\frac94\left(\frac{\pi}{2}\right)???

???A=\frac{9\pi}{8}???

 
Krista King.png
 

Get access to the complete Calculus 2 course