Krista King Math | Online math help

View Original

How to find the sum of a geometric series

When a geometric series converges

We already know from the last section that the standard form of a geometric series is

???\sum^{\infty}_{n=1}ar^{n-1}???

or

???\sum^{\infty}_{n=0}ar^n???

Given either of these forms, the geometric series test for convergence says that

if ???|r|<1??? then the series converges

if ???|r|\ge1??? then the series diverges

When a geometric series converges, we can find its sum.

Sum of a geometric series

We can use the values of ???a??? and ???r??? and the formula for the sum of a geometric series

???\sum^{\infty}_{n=1}ar^{n-1}=\frac{a}{1-r}???

or

???\sum^{\infty}_{n=0}ar^n=\frac{a}{1-r}???

to find the sum of the geometric series.

Finding the sum of a geometric series


Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)


Calculating the sum of a geometric series

Example

Calculate the sum of the geometric series.

???\sum^{\infty}_{n=0}\frac{2^{n-1}}{3^n}???

We showed in the last section that this series was geometric by rewriting it as

???\sum^{\infty}_{n=0}\frac{2^{n-1}}{3^n}???

???\sum^{\infty}_{n=0}\frac{2^n2^{-1}}{3^n}???

???\sum^{\infty}_{n=0}2^{-1}\left(\frac{2^n}{3^n}\right)???

???\sum^{\infty}_{n=0}\frac12\left(\frac23\right)^n???

Now that we have the series in the right form, we can say

???\sum^{\infty}_{n=0}ar^n=\sum^{\infty}_{n=0}\frac12\left(\frac23\right)^n??? where

???a=\frac12???

???r=\frac23???

Since the sum of a geometric series is given by

???\sum^{\infty}_{n=0}ar^n=\frac{a}{1-r}???

we can say that the sum is

???\sum^{\infty}_{n=0}\frac12\left(\frac23\right)^n=\frac{\frac12}{1-\frac23}???

???\frac{\frac12}{\frac33-\frac23}???

???\frac{\frac12}{\frac13}???

???\frac12\cdot\frac31???

???\frac32???

We could have also found the sum by expanding the series through its first few terms and identifying values for ???a??? and ???r???.

???\sum^{\infty}_{n=0}\frac12\left(\frac23\right)^n=\frac12\left[\left(\frac23\right)^0+\left(\frac23\right)^1+\left(\frac23\right)^2+\left(\frac23\right)^3+...\right]???

???\sum^{\infty}_{n=0}\frac12\left(\frac23\right)^n=\frac12\left(1+\frac23+\frac49+\frac8{27}+...\right)???

So

???a=\frac12???

???r=\frac23???

and

???\sum^{\infty}_{n=0}\frac12\left(\frac23\right)^n=\frac{\frac12}{1-\frac23}???

???\frac{\frac12}{\frac33-\frac23}???

???\frac{\frac12}{\frac13}???

???\frac12\cdot\frac31???

???\frac32???


Get access to the complete Calculus 2 course