How to find the sum of a geometric series

 
 
Sum of the geometric series blog post.jpeg
 
 
 

When a geometric series converges

We already know from the last section that the standard form of a geometric series is

???\sum^{\infty}_{n=1}ar^{n-1}???

or

???\sum^{\infty}_{n=0}ar^n???

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

Given either of these forms, the geometric series test for convergence says that

if ???|r|<1??? then the series converges

if ???|r|\ge1??? then the series diverges

When a geometric series converges, we can find its sum.

Sum of a geometric series

We can use the values of ???a??? and ???r??? and the formula for the sum of a geometric series

???\sum^{\infty}_{n=1}ar^{n-1}=\frac{a}{1-r}???

or

???\sum^{\infty}_{n=0}ar^n=\frac{a}{1-r}???

to find the sum of the geometric series.

 
 

Finding the sum of a geometric series


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Calculating the sum of a geometric series

Example

Calculate the sum of the geometric series.

???\sum^{\infty}_{n=0}\frac{2^{n-1}}{3^n}???

We showed in the last section that this series was geometric by rewriting it as

???\sum^{\infty}_{n=0}\frac{2^{n-1}}{3^n}???

???\sum^{\infty}_{n=0}\frac{2^n2^{-1}}{3^n}???

???\sum^{\infty}_{n=0}2^{-1}\left(\frac{2^n}{3^n}\right)???

???\sum^{\infty}_{n=0}\frac12\left(\frac23\right)^n???

Now that we have the series in the right form, we can say

???\sum^{\infty}_{n=0}ar^n=\sum^{\infty}_{n=0}\frac12\left(\frac23\right)^n??? where

???a=\frac12???

???r=\frac23???

Since the sum of a geometric series is given by

???\sum^{\infty}_{n=0}ar^n=\frac{a}{1-r}???

we can say that the sum is

???\sum^{\infty}_{n=0}\frac12\left(\frac23\right)^n=\frac{\frac12}{1-\frac23}???

???\frac{\frac12}{\frac33-\frac23}???

???\frac{\frac12}{\frac13}???

???\frac12\cdot\frac31???

???\frac32???

Sum of the geometric series for Calculus 2.jpg

Only if a Geometric series converges will we be able to find its sum.

We could have also found the sum by expanding the series through its first few terms and identifying values for ???a??? and ???r???.

???\sum^{\infty}_{n=0}\frac12\left(\frac23\right)^n=\frac12\left[\left(\frac23\right)^0+\left(\frac23\right)^1+\left(\frac23\right)^2+\left(\frac23\right)^3+...\right]???

???\sum^{\infty}_{n=0}\frac12\left(\frac23\right)^n=\frac12\left(1+\frac23+\frac49+\frac8{27}+...\right)???

So

???a=\frac12???

???r=\frac23???

and

???\sum^{\infty}_{n=0}\frac12\left(\frac23\right)^n=\frac{\frac12}{1-\frac23}???

???\frac{\frac12}{\frac33-\frac23}???

???\frac{\frac12}{\frac13}???

???\frac12\cdot\frac31???

???\frac32???

 
Krista King.png
 

Get access to the complete Calculus 2 course