Perpendicular and angle bisectors

 
 
Perpendicular and angle bisectors blog post.jpeg
 
 
 

What is an angle bisector?

In this lesson we’ll look at how to use the properties of perpendicular and angle bisectors to find out more information about geometric figures.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

Angle bisectors

An angle bisector goes through the vertex of an angle and divides the angle into two congruent angles that each measure half of the original angle. If ???\vec{AD}??? bisects ???\angle CAB???,

 
ray bisecting an angle
 

then

???m\angle DAB=m\angle CAD???

???m\angle DAB=\frac12m\angle CAB=m\angle CAD???

???2m\angle DAB=m\angle CAB=2m\angle CAD???

 
 

How to solve problems with perpendicular bisectors and angle bisectors


 
Krista King Math Signup.png
 
Geometry course.png

Take the course

Want to learn more about Geometry? I have a step-by-step course for that. :)

 
 

 
 

Solving for values in a polygon using perpendicular or angle bisectors

Example

If ???m\angle BAD=31^\circ??? and ???m\angle BDC=66^\circ???, and ???\overline{AD}??? is a bisector of both ???\angle BAC??? and ???\angle BDC???, what is ???m\angle C????

angle bisector in a parallelogram


Using what we already know, we can say

???m\angle BAD=m\angle DAC=31^\circ???

and

???m\angle ADC=\frac{1}{2}m\angle BDC=\frac{1}{2}\cdot 66^\circ =33^\circ???

The three angles of any triangle add up to ???180^\circ??? and we have ???\triangle ACD???, so

???31^\circ +33^\circ +m\angle C=180^\circ???

???64^\circ +m\angle C=180^\circ???

???m\angle C=116^\circ???


Perpendicular and angle bisectors for Geometry.jpg

An angle bisector goes through the vertex of an angle and divides the angle into two congruent angles that each measure half of the original angle.

Perpendicular bisectors

A perpendicular bisector crosses a line segment at its midpoint and forms a right angle where it crosses. ???\overline{CD}??? is a perpendicular bisector of ???\overline{AB}??? at point ???E???.

perpendicular line segments

This tells us that

???m\angle AEC=m\angle CEB=m\angle AED=m\angle BED=90^\circ???

???\overline{AE}=\overline{EB}???

Let’s look at a few more example problems.


Example

Find the value of ???y??? if ???\overline{CM}??? is a perpendicular bisector of ???\overline{AJ}???.

perpendicular bisectors

Because ???\overline{CM}??? is a perpendicular bisector of ???\overline{AJ}???, we know that ???\overline{AM}=\overline{MJ}???, so we can say

???5y+8=8.2y???

???8=3.2y???

???y=2.5???


Let’s look at one more problem.


Example

Find ???m\angle YXM??? if ???\overline{XM}??? is a perpendicular bisector of ???\overline{ZY}???.

perpendicular bisector in a triangle

We know ???\angle XMY??? is a right angle, so ???m\angle XMY=90^\circ???. The three angles of any triangle add up to ???180^\circ??? and we have ???\triangle XMY???.

???90^\circ +36^\circ +m\angle YXM=180^\circ???

???126^\circ +m\angle YXM=180^\circ???

???m\angle YXM=54^\circ???

 
Krista King.png
 

Get access to the complete Geometry course