Surface area of revolution of a parametric curve, horizontal axis

 
 
Surface area of revolution of a parametric curve, horizontal axis blog post.jpeg
 
 
 

Formula for the surface area of revolution

The surface area of the solid created by revolving a parametric curve around the ???x???-axis is given by

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

???S_x=\int^b_a 2\pi{y}\sqrt{\left[f'(t)\right]^2+\left[g'(t)\right]^2}\ dt???

where the curve is defined over the interval ???[a,b]???,

where ???f'(t)??? is the derivative of the curve ???f(t)???

where ???g'(t)??? is the derivative of the curve ???g(t)???

 
 

How to find the surface area of revolution of a parametric curve


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Finding surface area of revolution of a parametric curve when we rotate around the x-axis

Example

Find the surface area of revolution of the solid created when the parametric curve is rotated around the ???x???-axis over the interval ???0\le t\le\frac{\pi}{2}???.

???x=\cos^3{t}???

???y=\sin^3{t}???

We’ll call the parametric equations

???f(t)=\cos^3{t}???

???g(t)=\sin^3{t}???

The limits of integration are defined in the problem, but we need to find both derivatives before we can plug into the formula.

???f'(t)=-3\cos^2{t}\sin{t}???

???g'(t)=3\sin^2{t}\cos{t}???

Now we’ll plug into the formula for the surface area of revolution.

???S_x=\int^{\frac{\pi}{2}}_0 2\pi{\left(\sin^3{t}\right)}\sqrt{\left(-3\cos^2{t}\sin{t}\right)^2+\left(3\sin^2{t}\cos{t}\right)^2}\ dt???

???S_x=\int^{\frac{\pi}{2}}_0 2\pi\sin^3{t}\sqrt{9\cos^4{t}\sin^2{t}+9\sin^4{t}\cos^2{t}}\ dt???

???S_x=\int^{\frac{\pi}{2}}_0 2\pi\sin^3{t}\sqrt{9\sin^2{t}\cos^2{t}\left(\cos^2{t}+\sin^2{t}\right)}\ dt???

Surface area of revolution of a parametric curve, horizontal axis for Calculus 2.jpg

We need to find both derivatives before we can plug into the formula.

Since ???\sin^2{t}+\cos^2{t}=1???, we get

???S_x=\int^{\frac{\pi}{2}}_0 2\pi\sin^3{t}\sqrt{9\sin^2{t}\cos^2{t}\left(1\right)}\ dt???

???S_x=\int^{\frac{\pi}{2}}_0 2\pi\sin^3{t}\sqrt{9\sin^2{t}\cos^2{t}}\ dt???

???S_x=\int^{\frac{\pi}{2}}_0 2\pi\sin^3{t}\left(3\sin{t}\cos{t}\right)\ dt???

???S_x=6\pi\int^{\frac{\pi}{2}}_0\sin^4{t}\cos{t}\ dt???

We’ll use u-substitution, letting

???u=\sin{t}???

???du=\cos{t}\ dt???

We’ll make the substitution.

???S_x=6\pi\int^{x=\frac{\pi}{2}}_{x=0}u^4\ du???

???S_x=\frac{6\pi}{5}u^5\Big|^{x=\frac{\pi}{2}}_{x=0}???

Back-substituting for ???u???, we get

???S_x=\frac{6\pi}{5}\sin^5{t}\Big|^{\frac{\pi}{2}}_0???

???S_x=\left(\frac{6\pi}{5}\sin^5{\frac{\pi}{2}}\right)-\left(\frac{6\pi}{5}\sin^5{0}\right)???

???S_x=\frac{6\pi}{5}(1)^5-\frac{6\pi}{5}(0)^5???

???S_x=\frac{6\pi}{5}???

 
Krista King.png
 

Get access to the complete Calculus 2 course