Finding the limit of a convergent sequence

 
 
Limit of a convergent sequence blog post.jpeg
 
 
 

What is a convergent sequence?

Remember that a sequence is convergent if its limit exists as ???n\to\infty???.

So it makes sense that once we know that a sequence is convergent, we should be able to evaluate the limit as ???n\to\infty??? and get a real-number answer.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

The way that we simplify and evaluate the limit will depend on the kind of functions we have in our sequence (trigonometric, exponential, etc.), but we know that the limit as ???n\to\infty??? exists.

 
 

How to find the limit of a convergent sequence


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Finding the limit of the sequence when we already know the sequence converges

Example

Find the limit of the convergent sequence.

???a_n=\ln{\left(4n^3+3\right)}-\ln{\left(3n^3-5\right)}???

We’ve been told the sequence converges, so we already know that the limit will exist as ???n\to\infty???.

???\lim_{n\to\infty}a_n=\lim_{n\to\infty}\ln{\left(4n^3+3\right)}-\ln{\left(3n^3-5\right)}???

If we remember our laws of logarithms, we know that

???\ln{a}-\ln{b}=\ln{\frac{a}{b}}???

so we can simplify the limit to

???\lim_{n\to\infty}\ln{\left(4n^3+3\right)}-\ln{\left(3n^3-5\right)}=\lim_{n\to\infty}\ln{\left(\frac{4n^3+3}{3n^3-5}\right)}???

Limit of a convergent sequence for Calculus 2.jpg

The way that we simplify and evaluate the limit will depend on the kind of functions we have in our sequence (trigonometric, exponential, etc.), but we know that the limit as n approaches infinity exists.

We’ll divide each term in our rational function by the variable of the highest degree, ???n^3???.

???\lim_{n\to\infty}\ln{\left(4n^3+3\right)}-\ln{\left(3n^3-5\right)}=\lim_{n\to\infty}\ln{\left(\frac{\frac{4n^3}{n^3}+\frac{3}{n^3}}{\frac{3n^3}{n^3}-\frac{5}{n^3}}\right)}???

???\lim_{n\to\infty}\ln{\left(4n^3+3\right)}-\ln{\left(3n^3-5\right)}=\lim_{n\to\infty}\ln{\left(\frac{4+\frac{3}{n^3}}{3-\frac{5}{n^3}}\right)}???

Now we will evaluate the limit.

???\lim_{n\to\infty}\ln{\left(4n^3+3\right)}-\ln{\left(3n^3-5\right)}=\ln{\left(\frac{4+\frac{3}{\infty}}{3-\frac{5}{\infty}}\right)}???

We know that any fraction that has a constant in the numerator and an infinitely large denominator will approach ???0???, so

???\lim_{n\to\infty}\ln{\left(4n^3+3\right)}-\ln{\left(3n^3-5\right)}=\ln{\left(\frac{4+0}{3-0}\right)}???

???\lim_{n\to\infty}\ln{\left(4n^3+3\right)}-\ln{\left(3n^3-5\right)}=\ln{\frac43}???

The limit of the convergent sequence ???a_n=\ln{\left(4n^3+3\right)}-\ln{\left(3n^3-5\right)}??? is ???\ln{\frac43}???.

 
Krista King.png
 

Get access to the complete Calculus 2 course