Finding derivatives of logs and natural logs

 
 
Logarithmic derivatives blog post.jpeg
 
 
 

Formulas for the derivative of base-10 logs and natural logs

Given an exponential function in the form

???y=\log_{a}{\left[g(x)\right]}???

its derivative is

???y'=\left[\frac{1}{g(x)\ln{a}}\right]\left[g'(x)\right]???

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

In the case that our base ???a=e???, we have a special ???\log??? that's called ???\ln???. In other words, ???\log_{e}{\left[g(x)\right]}=\ln{\left[g(x)\right]}???. The natural log function

???y=\ln{\left[g(x)\right]}???

has a derivative of

???y'=\left[\frac{1}{g(x)}\right]\left[g'(x)\right]???

Let’s try an example with ???\log_a???.

 
 

Examples of how to find the derivative of different kinds of log and natural log functions


 
Krista King Math Signup.png
 
Calculus 1 course.png

Take the course

Want to learn more about Calculus 1? I have a step-by-step course for that. :)

 
 

 
 

Finding the derivative of a base-10 log function

Example

Find the derivative of the logarithmic function.

???y=6\log_8{\left(5x^4\right)}???

To find the derivative we need to apply the derivative formula for ???\log??? functions.

???y'=6\left(\frac{1}{5x^4\ln{8}}\right)\left(20x^3\right)???

???y'=\frac{120x^3}{5x^4\ln{8}}???

???y'=\frac{24}{x\ln{8}}???

Logarithmic derivatives for Calculus 1.jpg

When the base of a log is e, instead of 10, we call it the “natural logarithm.”

Finding the derivative of a natural log function

Example

Find the derivative of the logarithmic function.

???y=5\ln{\left(2x^3\right)}???

To find the derivative we need to apply the derivative formula for natural logs.

???y'=5\left(\frac{1}{2x^3}\right)\left(6x^2\right)???

???y'=\frac{30x^2}{2x^3}???

???y'=\frac{15}{x}???


Let’s try one final example that’s a little more complex.


A more complicated logarithmic derivative

Example

Find the derivative of the logarithmic function.

???y=9\ln{\left(3x^7\right)}+\left(4x^7\right)\left[\log_3{\left(8x^2\right)}\right]-2x^{12}???

We need to take the derivative one term at a time, applying the derivative formulas from the beginning of this section.

???y'=9\left(\frac{1}{3x^7}\right)\left(21x^6\right)+\left[\left(28x^6\right)\left(\log_3{\left(8x^2\right)}\right)+\left(4x^7\right)\left(\frac{1}{8x^2\ln{3}}\right)(16x)\right]-24x^{11}???

???y'=\frac{189x^6}{3x^7}+28x^6\log_3{\left(8x^2\right)}+\frac{64x^8}{8x^2\ln{3}}-24x^{11}???

???y'=\frac{63}{x}+28x^6\log_3{\left(8x^2\right)}+\frac{8x^6}{\ln{3}}-24x^{11}???

 
Krista King.png
 

Get access to the complete Calculus 1 course