Using the definition of the Laplace transform

 
 
Laplace transforms using the definition blog post.jpeg
 
 
 

Formula for the definition of the Laplace transform

To solve a Laplace transform in the form ???L\left\{f(t)\right\}??? using the definition of the Laplace transform, you’ll need to solve the equation

???F(s)=\int^\infty_0{e}^{-st}f(t)\ dt???

where ???F(s)??? is the Laplace transform of the function ???f(t)???, ???s??? is a constant, and ???f(t)??? is the given function.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 
 
 

Applying the definition of the Laplace transform in order to transform a differential equation


 
Krista King Math Signup.png
 
Differential Equations course.png

Take the course

Want to learn more about Differential Equations? I have a step-by-step course for that. :)

 
 

 
 

Laplace transform for an exponential function

Example

Use the definition to find the Laplace transform of the function.

???f(t)=e^{-2t}???

Plugging the given function into the definition of the Laplace transform gives

???F(s)=\int^\infty_0{e}^{-st}f(t)\ dt???

???F(s)=\int^\infty_0{e}^{-st}e^{-2t}\ dt???

???F(s)=\int^\infty_0{e}^{-st-2t}\ dt???

???F(s)=\int^\infty_0{e}^{(-s-2)t}\ dt???

Laplace transforms using the definition for Differential Equations.jpg

To Find the Laplace transform of a function using the definition of the Laplace transform, we’ll need to solve an integral equation.

Since ???s??? is a constant, we can integrate and say

???F(s)=\frac{1}{-s-2}e^{(-s-2)t}\Big|^\infty_0???

???F(s)=\lim_{b\to\infty}\frac{1}{-s-2}e^{(-s-2)t}\Big|^b_0???

Evaluate over the interval.

???F(s)=\lim_{b\to\infty}\frac{1}{-s-2}e^{(-s-2)b}-\frac{1}{-s-2}e^{(-s-2)0}???

???F(s)=\lim_{b\to\infty}\frac{1}{-s-2}e^{-(sb+2b)}-\frac{1}{-s-2}e^0???

???F(s)=\frac{1}{-s-2}e^{-\infty}-\frac{1}{-s-2}e^0???

Since ???e^{-\infty}=0???,

???F(s)=\frac{1}{-s-2}(0)-\frac{1}{-s-2}(1)???

???F(s)=-\frac{1}{-s-2}???

???F(s)=\frac{1}{s+2}???

This is the Laplace transform of ???f(t)=e^{-2t}???.

 
Krista King.png
 

Get access to the complete Differential Equations course