Krista King Math | Online math help

View Original

How to solve trigonometric limit problems

Formulas we use to solve limit problems

Trigonometric limit problems revolve around three formulas:

???\lim_{\theta\to0}\sin{\theta}=0???

???\lim_{\theta\to0}\cos{\theta}=1???

???\lim_{x\to0}\frac{\sin{x}}{x}=1???

When we solve trigonometric limit problems, our goal is always to reduce the function to a combination of nothing but these three formulas and simple constants.

How to solve trigonometric limit problems with trig limit formulas

See this content in the original post

Take the course

Want to learn more about Calculus 1? I have a step-by-step course for that. :)


Let’s do an example where we evaluate the trig limit

Example

Evaluate the limit.

???\lim_{x\to0}\frac{1-\cos{x}}{x}???

Since we have exactly two terms in the numerator, we’re actually going to borrow the conjugate method for the first step of this problem.

???\lim_{x\to0}\frac{1-\cos{x}}{x}\cdot\left(\frac{1+\cos{x}}{1+\cos{x}}\right)???

???\lim_{x\to0}\frac{1-\cos^2{x}}{x(1+\cos{x})}???

Applying the identity ???1-\cos^2{x}=\sin^2{x}??? to the numerator gives

???\lim_{x\to0}\frac{\sin^2{x}}{x(1+\cos{x})}???

Notice now that we can factor out ???(\sin{x})/x???, which is one of our three fundamental formulas.

???\lim_{x\to0}\frac{\sin{x}}{x}\cdot\frac{\sin{x}}{1+\cos{x}}???

???\lim_{x\to0}\frac{\sin{x}}{x}\cdot\lim_{x\to0}\frac{\sin{x}}{1+\cos{x}}???

Since the first limit is one of our three fundamental formulas, we can replace it with its value.

???1\cdot\lim_{x\to0}\frac{\sin{x}}{1+\cos{x}}???

???\lim_{x\to0}\frac{\sin{x}}{1+\cos{x}}???

And now we can evaluate the limit at ???x\to 0??? without making the denominator ???0???.

???\frac{\sin{0}}{1+\cos{0}}???

???\frac{0}{1+1}???

???0???

So the limit is ???0???.

???\lim_{x\to0}\frac{1-\cos{x}}{x}=0???


Get access to the complete Calculus 1 course