Krista King Math | Online math help

View Original

The root test for convergence

When the root test indicates absolute convergence, divergence, or is inconclusive

The root test for convergence lets us determine the convergence or divergence of a series ???a_n??? using the limit

???L=\lim_{n\to\infty}\sqrt[n]{|a_n|}???

The convergence or divergence of the series depends on the value of ???L???.

the series converges absolutely if ???L<1???.

the series diverges if ???L>1??? or if ???L??? is infinite.

the test is inconclusive if ???L=1???.

The root test is used most often when our series includes something raised to the ???n???th power.

The root test lets us determine absolute convergence


Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)


Using the root test to say whether or not the series converges

Example

Use the root test to say whether the series converges or diverges.

???\sum^{\infty}_{n=1}\frac{6^n}{(n+2)^n}???

To use the root test, we need to solve for the limit

???L=\lim_{n\to\infty\sqrt[n]{|a_n|}}???

and then evaluate the value of ???L???.

???L=\lim_{n\to\infty}\sqrt[n]{\left|\frac{6^n}{(n+2)^n}\right|}???

We can drop the absolute value bars since all of our terms will be positive.

???L=\lim_{n\to\infty}\sqrt[n]{\frac{6^n}{(n+2)^n}}???

???L=\lim_{n\to\infty}\left[\frac{6^n}{(n+2)^n}\right]^{\frac{1}{n}}???

???L=\lim_{n\to\infty}\left[\left(\frac{6}{n+2}\right)^n\right]^{\frac{1}{n}}???

???L=\lim_{n\to\infty}\left(\frac{6}{n+2}\right)^\frac{n}{n}???

???L=\lim_{n\to\infty}\frac{6}{n+2}???

???L=\frac{6}{\infty+2}???

???L=\frac{6}{\infty}???

???L=0???

Since ???L<1???, we can say that the original series ???a_n??? converges absolutely.


Get access to the complete Calculus 2 course