Krista King Math | Online math help

View Original

Dealing with fractional exponents

How fractional exponents are related to roots

In this lesson we’ll work with both positive and negative fractional exponents. Remember that when ???a??? is a positive real number, both of these equations are true:

???x^{-a}=\frac{1}{x^a}???

???\frac{1}{x^{-a}} = x^a???

The rule for fractional exponents:

When you have a fractional exponent, the numerator is the power and the denominator is the root. In the variable example ???x^{\frac{a}{b}}???, where ???a??? and ???b??? are positive real numbers and ???x??? is a real number, ???a??? is the power and ???b??? is the root.

???x^{\frac{a}{b}}??? ???=??? ???\sqrt[b]{x^a}???

Changing fractional exponents into roots and vice versa


Take the course

Want to learn more about Algebra 2? I have a step-by-step course for that. :)


An example where we change the fractional exponent into a root in order to simplify the expression

Example

Simplify the expression.

???4^{\frac{3}{2}}???

 

In the fractional exponent, ???3??? is the power and ???2??? is the root, which means we can rewrite the expression as

???\sqrt{4^3}???

???\sqrt{4 \cdot 4 \cdot 4}???

???\sqrt{64}???

???8???


Another rule for fractional exponents:

To make a problem easier to solve you can break up the exponents by rewriting them. For example, you can write ???x^{\frac{a}{b}}??? as

???\left[(x)^a\right]^{\frac{1}{b}}???

or as

???\left[(x)^{\frac{1}{b}}\right]^a???

Let’s do a few examples.


Let's do another example.

Example

Simplify the expression.

???\left(\frac{1}{9}\right)^{\frac{3}{2}}???

 

???9??? is a perfect square so it can simplify the problem to find the square root first. We can rewrite the expression by breaking up the exponent.

???\left[\left(\frac{1}{9}\right)^{\frac{1}{2}}\right]^3???

Raising a value to the power ???1/2??? is the same as taking the square root of that value, so we get

???\left[\sqrt{\frac{1}{9}}\right]^3???

???\left(\frac{\sqrt{1}}{\sqrt{9}}\right)^3???

???\left(\frac{1}{3}\right)^3???

This is the same as

???\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)???

???\frac{1}{27}???


How to get rid of fractional exponents

Example

Write the expression without fractional exponents.

???\left(\frac{1}{6}\right)^{\frac{3}{2}}???

 

We can rewrite the expression by breaking up the exponent.

???\left[\left(\frac{1}{6}\right)^3\right]^{\frac{1}{2}}???

???\left(\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}\right)^{\frac{1}{2}}???

Raising a value to the power ???1/2??? is the same as taking the square root of that value, so we get

???\sqrt{\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}}???

???\sqrt{\frac{1}{216}}???

???\frac{\sqrt{1}}{\sqrt{216}}???

???\frac{1}{\sqrt{36 \cdot 6}}???

???\frac{1}{\sqrt{36} \sqrt{6}}???

???\frac{1}{6\sqrt{6}}???

We need to rationalize the denominator.

???\frac{1}{6\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}???

???\frac{\sqrt{6}}{6 \cdot 6}???

???\frac{\sqrt{6}}{36}???


What happens if you have a negative fractional exponent?

You should deal with the negative sign first, then use the rule for the fractional exponent.

Example

Write the expression without fractional exponents.

???4^{-\frac{2}{5}}???

 

First, we’ll deal with the negative exponent. Remember that when ???a??? is a positive real number, both of these equations are true:

???x^{-a}=\frac{1}{x^a}???

???\frac{1}{x^{-a}} = x^a???

Therefore,

???4^{-\frac{2}{5}}???

???\frac{1}{4^{\frac{2}{5}}}???

In the fractional exponent, ???2??? is the power and ???5??? is the root, which means we can rewrite the expression as

???\frac{1}{\sqrt[5]{4^2}}???

???\frac{1}{\sqrt[5]{16}}???


Get access to the complete Algebra 2 course